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SYMMETRIZATION OF THE EQUATIONS OF DYNAMICS OF A CAPILLARY LIQUID 

L. K. Antanovskii UDC 532.68 

A model of the motion of a nonisothermal capillary liquid in the presence of surfact- 
ants at low concentration is described. A symmetric form of the equations in the intensive 
variables temperature-chemical potential is derived based on fundamental principles of 
thermodynamics. 

From the mechanical standpoint, capillary forces are internal forces and the problem 
of determining them is a problem in the rheology of a multiphase medium. The main difference 
between such a continuous medium and classical liquids is that in the phase mixing layer 
the stress tensor is anisotropic (Pascal's law is not satisfied). The thickness of the 
mixing layer is equal to several intermolecular distances and it remains virtually constant 
during the motion of the liquid. For this reason, it is natural to model this layer as an 
interphase surface F with distributed excess thermodynamic quantities e (internal energy), 
n (entropy), and 7 (concentration of surfactant molecules), making the assumption that the 
layer is an open thermodynamic system in contact with volume phases - a reservoir of heat 
and surfactant particles. This approach of Gibbs makes it possible to circumvent the com- 
plicated question of the structure and thickness of the phase mixing layer and to use more 
efficient thermodynamic methods [i]. 

The postulated principle of local thermodynamic equilibrium leads to the condition 
that the intensive parameters 8 (absolute temperature) and ~ (the chemical potential of 
the surfactant), which are characteristics of the reservoir, are continuous. This condi- 
tion makes it possible to extend the relations of equilibrium thermodynamics or thermo- 
statics to nonstationary processes involved in the dynamics of an interphase boundary. Here 
the principle of minimum entropy production is very important. This principle must be used 
in order to construct the correct relation between the heat flux q and the flux of surfact- 
ant molecules j and the gradients of 8 and ~ [2]. 

i. Thermodynamics of the Interphase Boundary. Consider a closed thermodynamic system 
consisting of two phases separated by a uniform interphase surface of area A. Let E be 
the total energy of the system, N be the number of surfactant molecules, S(E, N) be the 
entropy of the volume phases, and An(e, 7) be the excess entropy of the surface. According 
to the principle of maximum total entropy S(E - AE, N - AT) + An(e, 7) § max in the approx- 
imation AE ~ E, A 7 << N (the reservoir is much larger than the system in contact with it) 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 
No. 6, pp. 128-131, November-December, 1990. Original article submitted August 9, 1989. 

918 0021-8944/90/3106-0918512.50 �9 1991 Plenum Publishing Corporation 



we obtain G(E, ~) - E/O + u + max [I/0 = 8S(E, N)/8 E and 5/0 = -3S(E, N)/3N are charac- 

teristics of the reservoir]. 

To find the equilibrium values of g and ~ it is convenient to introduce the function 

(r (0, ; )  = r a i n  {e - -  Oq (s,  ? )  - -  ; 7} .  ( 1 . 1 )  

Since 6 is positive (as a consequence of the fact that there is no upper limit of the energy 
spectrum), the minimum is achieved for values of e and y for which the total entropy is 
maximum. According to the property of Legendre transformations, a concave function q(g, ~) 
satisfies the equation 

1] (e, "7) ---- m i n  {Is - -  o" (0, ?)  - -  $u  
o.;  

and from Eq. (i.i) there follow formulas for the equilibrium values: 

It is obvious that the function o(0, ~), as the lower limit of linear functions, is concave, 
so that the matrix of its second derivatives is negative-definite, i.e., 

o'00 < 0, o~<: < 0, ooeo~ > (oeC)z. (i. 3) 

For volume incompressible liquid phases, prescribing the specific entropy s(e, c) as 
a concave function of its arguments e (specific internal energy) and c (specific surfactant 
concentration) makes it possible to introduce the thermodynamic Gibbs potential 

] (0, ~) = rain {e - -  Os (e, c) - -  $c}. 
e~C 

By analogy to Eqs. (1.2) and (1.3) we have 

s = - i o ,  c = - f : ,  e = I - oio - ~I~: ( : .  4 )  

[oo < O, I~ < O,/oef:~ > (~)~. ( I. 5) 

In other words, the quantity o(0, ~) is equal to the excess surface denisty of the thermo- 
dynamic potential. 

We will now study the equilibrium process of the change in the area A of the interphase 
boundary. Taking into account the condition ds - 8dq - ~d~ = 0 at the point of the minimum 
gives the basic thermodynamic identity 

odA = (s  - -  Oq - -  ~?)dA = d(Ae)-- Od(An)-- C d ( A ? ) .  

Therefore the function o(0, ~) is the surface tension and the stressed state F is described 
by the surface tensor oG F (G F = G - n | n is the metric tensor of the surface F, G is the 

metric tensor of the space, n is the normal to F, and ~ designates a tensor product). 

The condition o > 0 is necessary in order for the interphase boundary, which can only 
be stretched, to be stable. In the opposite case, the liquids in contact with one another 
will dissolve within one another. The excess quantities q, u and E are not necessarily 
positive (the class of surfactants also includes inactive substances, which strive to pene- 
trate into the region of phase mixing), so that the signs of 08 and or can be arbitrary. 

The conditions (1.3) are more fundamental, since they are based on the principle of maximum 
entropy. At first glance the inequality o00 < 0 contradicts the anomalous thermocapillary 
effect, connected with the experimental observation that o(8) is minimum on the interface 
of water solutions Of some alcohols and air [3j~ In reality, there is no contradiction 
here, since the thermodynamic state of solutions having the same temperature is not deter- 
mined: it is necessary to introduce the chemical potential of alcohol. In the experiments 
the complicated dependence 0(0, r was actually measured; this dependence has a minimum, 
if ~ decreases as 0 increases, which determines the intense process of transfer of surfact- 
ant molecules out of the mixing layer into the volume with a corresponding increase in o. 

2. Equations of Motion. Assume that the temperature and low concentration of surfact- 
ant molecules have no effect on the dynamical characteristics of the solvent, i.e., the 
density p and the viscosity H are piecewise-constant with a surface of discontinuity F. 
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We write the classical laws of conservation of momentum, mass, energy, and number of surfact- 
ant molecules in the diffusion approximation: 

pv =pg--vp+ ~Av, divv = 0; (2.1) 

pe = 2~D : D - -  div q, pc = - - d i v  j. ( 2 . 2 )  

Here v is the velocity, p is the pressure, D is the strain-rate tensor, g is the mass den- 
sity of external forces, and a dot designates a total time derivative. We introduce the 
pressure tensor P = pG - 2pD. Then the laws of conservation of momentum, energy, and num- 
ber of surfactant molecules on F will assume the form 

[ P . n ]  = d i v r  (6Gr); ( 2 . 3 )  

+ e divr  v = a divr  v - -  [q .n] ,  ? + y divr  v = - - [ j . n ] .  ( 2 . 4 )  

The brackets designate the operation of calculating a jump 

[[] (x) = l im sgn z {/(x + zn) - -  I (x - -  zn)}, 
Z ~ 0  

and  V F = GF'V i s  a s u r f a c e  g r a d i e n t .  The d y n a m i c a l  c o n d i t i o n  ( 2 . 3 )  a t  e q u i l i b r i u m  t r a n s -  

f o r m s  into Laplace's law [p] = ok (k = -divFn is the sum of the principle curvatures of 

F). For v = 0 and o = const this follows from the chain of equalities 

divr  Gr = d i v r ( G - - n  | n) = - - n  divv n - -  n - V r n  = kn, 

because the tensor 7Fn  does not have normal components. 

Assume that there are no phase transitions (F is a Lagrangian surface) and the princi- 
ple of local thermodynamic equilibrium is satisfied. Then 

x = v ,  [ v ]  = O, [01 = O, [ ~ ]  = 0 on r .  ( 2 . 5 )  

We will describe transport processes by means of Onsager's principle (a particular variant 
of the principle of minimum entropy production), i.e., we assume [2] that 

q = L n v ( i / O  ) + L,~V(--~/O), j = L2,V(IIO ) + L2~V(-- ~I0), ( 2 . 6 )  

the matrix of kinematic coefficients (Lij) is symmetric and positive-definite. 

For simplicity transport processes along F are neglected in Eq. (2.4): there are no 
excess thermal conductivity and diffusion coefficients. These quantities are extremely 
small and cannot be reliably measured experimentally. Apparently, only the diffusion of 
undissolved surfactants along F can appreciably affect the motion and this can be taken 
into account by adding to the right side of the last equation in Eqs. (2.4) the term -div r • 
jr, jr = - LFVF(~/e). In all other cases the effect of surface diffusion is explained by 

diffusion in the volume and does not require introducing into the model additional diffi- 
cult to measure quantities on the basis of the principle of local thermodynamic equilibrium. 

3. Transfer to Intensive Variables. The conservation laws (2.2) and (2.4) lead to 
the equations of entropy production in the volume pw = ~ - div h and at the surface 6 + q x 
div r v=--[h.n], Where ~ = 2~D:D/0 + q.V(I/0)+j'V(-~/8) is the dissipation function and 

h = (q'-- ~j)]8 is the entropy flux vector. From Eq. (2.6) there follow the representations 

- - h  = KnV o + KI~ v ~, - - j  = KzlvO'q-K22v ~, ( 3 . 1 )  

K l l  = ( L l l  -- 2~L12 + ~ 2 L 2 2 ) / 0 s  , K12 = K21 = (Lz2 - ~ L 2 2 ) / 0 2 ,  K22 = L 2 2 / 8 ,  i . e . ,  t h e  m a t r i x  
Kij is symmetric and positive-definite. Now the laws of conservation of energy and number 

of surfactant molecules, substituting Eqs. (1.2) and (1.4), can be written as 

P(--  [o)" = ~ - -  d i v h ,  p ( - - / ; ) "  = - - d i v  j; ( 3 . 2 )  

(%)" + % d i r t  v = [h-n] ,  (~)" + e : d i v r  v = [ j .n ] .  ( 3 . 3 )  

920 



Thus, based on Eqs. (1.3) and (1.5), the system of equations (3.1)-(3.3) in the variables 
(6, ~) has a symmetric dissipative structure. 

An analogous construction can be suggested for modeling phase transitions; in particu- 
lar, Stefan's problem of thermal diffusion can be symmetrized. Here it must be assumed 
that there exists a section where s(e, c) is linear and which, under a Legendre transforma- 
tion, will correspond to the line of corner points of the graph of the function f(0, ~), 
which will result in discontinuity of the extensive thermodynamic variables s, c, and e, 
represented by the formulas (1.4). This line in the plane (8, ~) determines the dependence 
of the temperature of the phase transition on the chemical potential ~ and not on the im- 
purity concentration. 

The equations of equilibrium gas dynamics and the theory of elasticity are sy~etrized 
in [4] based on the second law of thermodynamics. The relation between the symmetrization 
of the equations of thermomechanics of continuous media and the principles of the minimum 
thermodynamic potential and entropy production was pointed out in [5], where instead of 
(9, ~) the variables (i/0, -~/O) were employed. We note that the requirement that the 
thermodynamic functions and the dissipation potentials be convex is very important and 
apparently necessary in order to construct the correct mathematical models of the mechanics 
of a continuous medium. 

4. Examples. The model of the motion of a capillary liquid (2.1), (2.3), (2.5), and 
(3.1)-(3.3) requires prescribing the matrix of transfer coefficients Kij and two concave 

functions f(e, ~), o(e, ~). Comparing Eqs. (2.6) and (3.1) with Fourier's law q= -XVe and 
Fick's law j = -%V~ (X, % are the thermal conductivity and diffusion coefficient), we obtain 

For f and o we can use the functions 

/(O, .~) = - -O{a log  (O/Oo) + coexp ($/0)}, ( 4 . 1 )  

o (0 ,  ~) = ~o(0) - -  y~.O l o g { i  + exp (~/0)}, 

w h e r e  t h e  p o s i t i v e  q u a n t i t i e s  a ( s p e c i f i c  h e a t  c a p a c i t y ) ,  0 0,  a n d  c o d e p e n d  on  t h e  p h a s e  
o f  t h e  s o l v e n t ,  o 0 ( 0 )  i s  t h e  s u r f a c e  t e n s i o n  o f  a c l e a n  i n t e r p h a s e  b o u n d a r y ,  a n d  ~ i s  t h e  

maximum concentration of the surfactant on F. The equalities (1.2) and (i.4) lead to the 
expressions 

s = a {log (O/Oo) + i}  + e o ( t  - -  ~/0) exp  (~/0), c = e o exp (~/0), 

e = aO, ~1 ---- - -  (1'o (0) - -  ?oo {(~0) exp (~/0)/[1 + exp  (~/0)] - -  
t 

- -  log [t + exp (~/O)]}, Y = 7~o exp  (~i0)t[t  + exp  (~I0)], e = (~o (0) - -  0c% (0), .  

and from the conditions (2.5) there follows Langmuir's adsorption formula 

? - "~oc/(Co + c), [C/Co] = 0 on r .  

The relations (4.i) correspond to the expressions for the specific and surface entropy 

s(e ,  c) = a {log (e/aOo) + i}  + c {t  - -  l o g  (c/co) }, 

~(~, ~,) = ~lo(~) + -~oo log {~,~/(-~ - , ; ) }  - .~ ] o ~  { , ~ / ( - ~  - ~,)}, 

i.e., they transform into one another under a Legendre transformation. 

LITERATURE CITED 

i. J. W. Gibbs, Thermodynamics. Statistical Mechanics [Russian translation], Nauka, Mos- 
cow (1982). 

2. I. Diarmati, Nonequilibrium Thermodynamics~ Field Theory and Variational Principles 
[Russian translation], Mir, Moscow (1974). 

3. J. C. Legros, M. C. Limbourg-Fontaine, and G. Petre, "Influence of a surface tension 
minimum as a function of temperature on the Marangoni convection," Acta Astronaut., 
!!, No. 2 (1984). 

4. S~ K. Godunov, Elements of the Mechanics of Continuous Media [in Russian], Nauka, 
Moscow (1978). 

5. L. K. Antanovskii, "Effect of capillary forces on nonstationary motion of a drop in 
a uniform liquid," in: Hydromechanics and Heat and Mass Transfer in Zero Gravity 
[in Russian], Institute of Geophysics of the Siberian Branch of the Academy of Sciences 
of the USSR, Novosibirsk (1988). 

921 


